首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724篇
  免费   66篇
  国内免费   7篇
测绘学   24篇
大气科学   52篇
地球物理   143篇
地质学   298篇
海洋学   68篇
天文学   89篇
综合类   1篇
自然地理   122篇
  2023年   4篇
  2022年   6篇
  2021年   22篇
  2020年   29篇
  2019年   24篇
  2018年   34篇
  2017年   47篇
  2016年   43篇
  2015年   32篇
  2014年   32篇
  2013年   43篇
  2012年   45篇
  2011年   53篇
  2010年   50篇
  2009年   81篇
  2008年   50篇
  2007年   44篇
  2006年   27篇
  2005年   14篇
  2004年   23篇
  2003年   26篇
  2002年   14篇
  2001年   10篇
  2000年   10篇
  1999年   2篇
  1998年   8篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有797条查询结果,搜索用时 15 毫秒
31.
Seamounts were often considered as ‘hotspots of diversity’ and ‘centers of endemism’, but recently this opinion has been challenged. After 25 years of exploration and the work of numerous taxonomists, the Norfolk Ridge (Southwest Pacific) is probably one of the best-studied seamount chains worldwide. However, even in this intensively explored area, the richness and the geographic patterns of diversity are still poorly characterized. Among the benthic organisms, the post-mortem remains of mollusks can supplement live records to comprehensively document geographical distributions. Moreover, the accretionary growth of mollusk shells informs us about the life span of the pelagic larva. To compare diversity and level of endemism between the Norfolk Ridge seamounts and the continental slopes of New Caledonia we used species occurrence data drawn from (i) the taxonomic literature on mollusks and (ii) a raw dataset of mainly undescribed deep-sea species of the hyperdiverse Turridae. Patterns of endemism and species richness were analyzed through quantitative indices of endemism and species richness estimator metrics. To date, 403 gastropods and bivalves species have been recorded on the Norfolk Ridge seamounts. Of these, at least 38 species (∼10%) are potentially endemic to the seamounts and nearly all of 38 species have protoconchs indicating lecithotrophic larval development. Overall, our results suggest that estimates of species richness and endemism, when sampling effort is taken into account, were not significantly different between slopes and seamounts. By including in our analyses 347 undescribed morphospecies from the Norfolk Ridge, our results also demonstrate the influence of taxonomic bias on our estimates of species richness and endemism.  相似文献   
32.
33.
Emissions of biogenic volatile organic compounds (BVOCs) from mechanical wounding of leaves and branches of plants can contribute to the atmospheric burden of volatile organic compounds (VOCs) in both (a) urban airsheds (from urban garden maintenance) and (b) the global atmosphere (from large scale forest harvesting). These emissions of BVOCs are poorly understood and quantified, and their role in urban and global emissions inventories neglected. This paper presents measurements of the magnitude, duration and composition of emissions of BVOCs, carbon dioxide (CO2) and methane (CH4) from freshly cut leaf mulch and wood chips derived from a common eucalypt tree, Eucalyptus sideroxylon (red ironbark), found in southeastern Australian forests and gardens. The emissions of BVOCs from freshly cut and shredded leaves and wood of E. sideroxylon were found to be 2.3 ± 0.6 and 0.05 ± 0.04 mg g-1 DM (Dry Mass) from leaf mulch and wood chips respectively and to last typically for 1 day following cutting. Three sampling techniques were used for VOC speciation and the 12 most abundant BVOCs released from the mulch materials were identified. The specific BVOCs emitted in order of decreasing abundance from leaf mulch are: (a) stored plant oils, 1,8-cineole, α–pinene and o-cymene which make up the major part of the emissions, (b) a minor contribution from chemicals associated with environmental stress and wound defence, (Z)–3–hexenyl acetate, (E)-2-hexenal and (Z)-3-hexen-1-ol, and (c) a second minor contribution from metabolic products, acetaldehyde and acetone. The observed integrated emissions of BVOCs from leaves following mulching are equivalent to more than half and perhaps all of the likely stored plant oils in the leaves. For the two comparable studies available, one of a plant with stored oils (this study) and one of a plant without stored plant oils, the emissions of leaf wound defence BVOCs are in the same range for both plants. In the plant with stored plant oils, the plant oil emissions are about a factor of 11 larger in emission rate than the plant wound defence BVOCs. A compilation of available leaf wounding BVOC emission studies indicates that for plants with stored plant oils, plant oil emissions dominate, whereas with other plants, leaf wound defence BVOCs dominate the emissions.  相似文献   
34.
Accurate seasonal forecasts rely on the presence of low frequency, predictable signals in the climate system which have a sufficiently well understood and significant impact on the atmospheric circulation. In the Northern European region, signals associated with seasonal scale variability such as ENSO, North Atlantic SST anomalies and the North Atlantic Oscillation have not yet proven sufficient to enable satisfactorily skilful dynamical seasonal forecasts. The winter-time circulations of the stratosphere and troposphere are highly coupled. It is therefore possible that additional seasonal forecasting skill may be gained by including a realistic stratosphere in models. In this study we assess the ability of five seasonal forecasting models to simulate the Northern Hemisphere extra-tropical winter-time stratospheric circulation. Our results show that all of the models have a polar night jet which is too weak and displaced southward compared to re-analysis data. It is shown that the models underestimate the number, magnitude and duration of periods of anomalous stratospheric circulation. Despite the poor representation of the general circulation of the stratosphere, the results indicate that there may be a detectable tropospheric response following anomalous circulation events in the stratosphere. However, the models fail to exhibit any predictability in their forecasts. These results highlight some of the deficiencies of current seasonal forecasting models with a poorly resolved stratosphere. The combination of these results with other recent studies which show a tropospheric response to stratospheric variability, demonstrates a real prospect for improving the skill of seasonal forecasts.  相似文献   
35.
Numerical flow models can be a useful tool for dimensioning water wells and to investigate the hydraulics in their near‐field. Fully laminar flow can be assumed for all models calculated up to the screen. Therefore models can be used to predict—at least qualitatively, neglecting turbulent losses inside the well—the spatial distribution of inflow into the well and the overall hydraulic performance of different combinations of aquifer parameters and technical installations. Models for both horizontal (plan view) and vertical flow (cross section) to wells were calculated for a variety of setups. For the latter, this included variations of hydraulic conductivity of the screen, pump position, and aquifer heterogeneity. Models of suction flow control devices showed that they indeed can homogenize inflow, albeit at the cost of elevated entrance losses.  相似文献   
36.
Split-operator methods are commonly used to approximate environmental models. These methods facilitate the tailoring of different approximation approaches to different portions of the differential operator and provide a means to split large coupled problems into pieces that are more amenable to parallel computation than the original fully-coupled problem. However, split-operator methods introduce an additional source of approximation error into the solution, which is typically either ignored or controlled heuristically. In this work, we develop two methods to estimate and control the error in split-operator methods, which lead to a dynamic adjustment of the temporal splitting step based upon the error estimators. The proposed methods are shown to yield robust solutions that provide the desired control of error. In addition, for a typical nonlinear reaction problem, the new methods are shown to reduce the solution error by more than two orders of magnitude compared to standard methods for an identical level of computational effort. The algorithms introduced and evaluated have widespread applicability in environmental modeling.  相似文献   
37.
Aggregate size distribution affects the soil’s physical quality and fertility. Widely used aggregation indices include the size fractions <0.25 mm, >2 mm, and >8 mm, and the mean weight diameter of aggregates. A recent study from the semi-arid hilly rangeland of the Negev desert, Israel revealed considerable impact of the type of surface cover (shrub patches, trampling routes, and the remainder of the interpatch spaces) on these indices, but only limited impact of hillside aspect (north- vs. south-facing) and a small impact of livestock grazing. The aim of this study was to address the impact of these factors on the poorly studied mid-size aggregate fraction of 1-5 mm as a complementary index of the soil’s physical quality. The content and mean weight diameter of this fraction were analyzed by using the same set of soil samples. As a general trend, compared with the widely used aggregation indices, the content of this fraction was found to be more responsive to livestock grazing. Furthermore, both the content and mean weight diameter of this fraction were found to be highly responsive to type of cover. These effects reveal positive relationships between this fraction and the soil’s physical quality.  相似文献   
38.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   
39.
As the impacts from anthropogenic climate change are increasing globally, people are experiencing dramatic shifts in weather, temperature, wildlife and vegetation patterns, and water and food quality and availability. These changes impact human health and well-being, and resultantly, climate change has been identified as the biggest global health threat of the 21st Century. Recently, research is beginning to indicate that changes in climate, and the subsequent disruption to the social, economic, and environmental determinants of health, may cause increased incidences and prevalence of mental health issues, emotional responses, and large-scale sociopsychological changes. Through a multi-year, community-led, exploratory case study conducted in Rigolet, Nunatsiavut, Labrador, Canada, this research qualitatively explores the impacts of climate change on mental health and well-being in an Inuit context. Drawing from 67 in-depth interviews conducted between January 2010 and October 2010 with community members and local and regional health professionals, participants reported that changes in weather, snow and ice stability and extent, and wildlife and vegetation patterns attributed to climate change were negatively impacting mental health and well-being due to disruptions in land-based activities and a loss of place-based solace and cultural identity. Participants reported that changes in climate and environment increased family stress, enhanced the possibility of increased drug and alcohol usage, amplified previous traumas and mental health stressors, and were implicated in increased potential for suicide ideation. While a preliminary case study, these exploratory findings indicate that climate change is becoming an additional mental health stressor for resource-dependent communities and provide a baseline for further research.  相似文献   
40.
We analyzed the distribution patterns of the galatheid squat lobsters (Crustacea, Decapoda, Galatheidae) of the Pacific Ocean. We used the presence/absence data of 402 species along the continental slope and continental rise (200–2000 m) obtained from 54 cruises carried out in areas around the Philippines, Indonesia, Solomon, Vanuatu, New Caledonia, Fiji, Tonga, Wallis and Futuna and French Polynesia. The total number of stations was ca. 3200. We also used published data from other expeditions carried out in the Pacific waters, and from an exhaustive search of ca. 600 papers on the taxonomy and biogeography of Pacific species. We studied the existence of biogeographic provinces using multivariate analyses, and present data on latitudinal and longitudinal patterns of species richness, rate of endemism and the relationship between body sizes with the size of the geographic ranges. Latitudinal species richness along the Western and Eastern Pacific exhibited an increase from higher latitudes towards the Equator. Longitudinal species richness decreased considerably from the Western to the Central Pacific. Size frequency distribution for body size was strongly shifted toward small sizes and endemic species were significantly smaller than non-endemics. This study concludes that a clear separation exists between the moderately poor galatheid fauna of the Eastern Pacific and the rich Western and Central Pacific faunas. Our results also show that the highest numbers of squat lobsters are found in the Coral Sea (Solomon-Vanuatu-New Caledonia islands) and Indo-Malay-Philippines archipelago (IMPA). The distribution of endemism along the Pacific Ocean indicates that there are several major centres of diversity, e.g. Coral Sea, IMPA, New Zealand and French Polynesia. The high proportion of endemism in these areas suggests that they have evolved independently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号